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ABSTRACT

The Lanczos Algorithm is becoming accepted as a powerful tool for finding

the eigenvalues and eigenvectors of large sparse matrices. This dissertation

considers the application of the Lanczos algorithm to the solution of large

sparse symmetric systems of linear equations. We analyze the symmetric

Lanczos process with various reorthogonalization methods, and present a

new implementation of the algorithm, which efficiently maintains orthogonal-

ity among the Lanczos vectors. This new algorithm is discussed in detail,

compared to other methods, and tested with some numerical examples.
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INTRODUCTION

In many applications one encounters the intermediate task oj~ comput-

ing a solution vector % to the system of linear equations

Az:=b. (0.1)

where A is a symmetric, nonsingular n xn matrix and b is an n-vectl~r. If A is

large and sparse, there is an elegant way to exploit the sparsity by eimploying

A only as a linear operator which computes hu for any given vector v. There

are several methods known which produce an approximate solution vector

based only on repeated computation of matrix vector products, e.g., the

method of conjugate gradients (called hereafter CG) by Hestenes and Stiefel

[12], Lanczos' [16] method of minimized iterations (called hereafter LAN),

and the algorithm SYMMLQ by Paige and Saunders [26].

These methods have several attractive features in common. There are

no special properties needed for A (except positive definiteness for CG), no

acceleration parameters have to be estimated, and the fast storagE~ require-

ments are only a few n-vectors in addition to the demands of the operator A.

Since Reid [33] pointed out these advantages CG has been widely used

for solving sparse positive definite systems. By rethinking CG so that it could

be applied to indefinite (i.e. neither positive nor negative definite) systems.

Paige and Saunders created SYMMLQ. Both methods are iterative in nature.

i.e. at each step a current approximate solution vector is be updated until an

estimate for the corresponding residual norm is smaller than a prescribed

tolerance. In contrast to this updating feature the Lanczos algorithm com-

putes a set of orthonormal vectors. the Lanczos vectors. Only at the end of a

run is an approximate solution to (0.1) computed from the Lanczos 'vectors.
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When A is positive definite. it turns out that in exact arithmetic all these

methods mentioned above produce exactly the same approximate :solution.

So why reintroduce a variant of an established algorithm. which: -as it

appears -has the disadvantage of requiring the storage of a large nlLmber of

vectors? The are two arguments in favor of the Lanczos algorithm:

1)

The availability of the Lanczos vectors makes it possible to (~ompute

approximate solutions for subsequent right hand sides at little cost.

whereas for CG the iteration has to be carried out for each right hand

side from the beginning.

2) Because of the influence of roundoff errors the actual implementations

of these methods differ considerably from their ideal counterparts. The

Lanczos vectors and the corresponding residual vectors in CG lose their

orthogonality and may even become linearly dependent. One might

expect that under these circumstances the algorithm is unstable and

breaks down. But the loss of orthogonality does not prevent conver-

gence, it only delays it. CG, which would terminate in exact arithmetic

after at most n steps. may in practice well take many more than n steps

for ill conditioned systems, but still produce a good solution. If ortho-

gonality among the Lanczos vectors can be maintained at some reason-

able cost, then LAN will minimize the number of calls on A and thus

reduce the overall cost. Finally the recent idea of preconditioning can

cut down significantly the number of steps needed (Meijerink and van

der Vorst[21]; Kershaw [16]: Jennings and Malik [14]; Manteufiel [20]).

An 

implementation of the Lanczos algorithm therefore faces two crucial

tasks: the storage of a certain number of Lanczos vectors and the mainte-

nance of orthogonality among them. The problem of storing the Lanczos vec-
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tors can be solved by using secondary storage. This should be fairly easy

since the vectors are only needed from time to time and are always I~ccessed

sequentially.

The maintenance of orthogonality is more difficult. Traditionally (Wilkin-

son [41]; Golub, Underwood. and Wilkinson [B]) it has been suggeste:d to use

full reorthogonalization of the Lanczos vectors at each step. Thi~i is very

expensive for the size of problem considered here. Recently Parlett and

Scott [32] introduced selective orthogonalization (SO) for the eigenvalue

problem as an economical way of maintaining orthogonality among the Lanc-

zos vectors. In [30] Parlett shows how the Lanczos algorithm with SO can be

used for the solution of symmetric linear systems.

This thesis follows the program outlined in Parlett[30] and discusses in

detail various aspects of the application of the Lanczos algorithm for solving

(0.1) for large sparse systems. Its main contributions are a new understand-

ing of the loss of orthogonality in finite precision arithmetic anld a new

reorthogonalization method which we call partial reorthogonalization (PRO)

to distinguish it from Parlett and Scott's selective orthogonalization (SO).

In Chapter 1 the Lanczos algorithm in exact arithmetic is introduced

and its relation to the method of conjugate gradients and the algorithm

SYMMLQ is exhibited. The connections with various other methods for

indefinite systems are discussed. An a priori error bound for this family of

methods is derived, based on results obtained by Kaniel [15]. Some details of

the algorithm are presented, and finally it is shown how the Lanczos algo-

rithm lends itself to the treatment of several right hand sides.

Chapter 2 presents a readable error analysis of the symmetric Lanczos

algorithm in finite precision arithmetic. The loss of orthogonality aI:rlong the
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computed Lanczos vectors can now be explained satisfactorily ..nth the help

of a recurrence formula, and Paige's Theorem (24] can be derived from this

among the Lanczos vectors is enough to guarantee the accuracy of the com-

puted quantities up to machine precision. This is an improveme]:lt over

results by Grcar

analyzed. and it is shown that selective ortbogonalization as introdllced by

Parlett and Scott [32] indeed maintains semiortbogonality among the Lanc-

zos vectors.

The results of Chapter 2 give rise to the already mentioned

reorthogonalization scheme for the Lanczos algorithm called PRO. It is

based on a recurrence which allows one to monitor the loss of orthog:onality

among the Lanczos vectors directly without computing any inner products.

Based on the information from the recurrence, reorthogonalizations are

made only when necessary. Thus substantial savings are gained as compared

to full reorthogonalization. Details of the practical implementation of PRO

and a comparison with SO are discussed in Chapter 3.

The Lanczos algorithm with PRO is tested in Chapter 4. Several large sys-

terns (up to order 1000) of linear equations derived from finite element

approximations to structural engineering problems are solved. The numeri-

cat results show that the Lanczos algorithm is especially useful, when the

matrix vector product dominates other costs, or when the system has to be

solved for several right hand sides. In addition positive definite

indefinite systems can be solved with equal ease.

The results of Chapter 2 and 3 are also applicable to the eigenvalue

problem. Therefore, whenever it is possible without distraction from the



main topic, immediate consequences of our results for the eigenvalue prob-

lem are stated.

Throughout this thesis the notation will follow Householder's convention:

small Greek letters for scalars, small Roman letters for column vectors, capi-

tal Roman letters for matrices. Symmetric letters (A,M I V, W) will be reserved

for symmetric matrices. All quantities are real unless otherwise noted.

denotes the Euclidean norm for vectors and the associated spectral norm for

matrices.



11

relation between the two methods has been pointed out by Householder in

[13. pg. 139-141].

(1.2.8) shows from a different perspective why CG in general cannot be

used for indefinite A. In this case Tj may be singular for certain values of j,

then the factorization (1.2.8) does not exist, and hence the algorithm breaks

down. Paige and Saunders [28] recognized that this difficulty can be over-

come, if a different factorization of Tj is chosen. They suggest that instead of

{1.2.8} the orthogonal factorization

Ti = r;;Zi (1.2.9)

is used. where Zj.Zj = Ij and Lj is a lower trapezoidal matrix. This factoriza-

tion always exists and is numerically stable. Paige and Saunders use a

sequence of plane rotations in order to obtain the factorization (1.2.9), and

derive a new iterative method for updating xi in the same manner as CG. This

new method is called SYMMLQ. The approximate solution computed in this

way is identical to the one computed by either LAN or CG. There is however a

subtle modification in SYMMLQ which should be mentioned. At the j-th step

the matrix Li in (1.2.9) is sometimes replaced by the matrix .q, which is the

j xj leading part of ~, and which differs from Ii in the (j ,j) element only.

This change produces an approximate solution xfQ, which is different from

the smaller residual norm. xfQ is usually chosen when T; is ill-conditioned.

In [28] it is reported that SYMMLQ worked well on indefinite problems, but

was slower than CG on positive definite problems due to a larger number of

operations per step.

There are several other methods. which attempt to modify CG in order

to make it also applicable for indefinite matrices. e.g. Luenberger's
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algorithm [19] using hyperbolic pairs or Fletcher's [6] method, taking two CG

steps at once if necessary, which is equivalent to carrying out the Bunch-

Parlett [3] algorithm using 2x2 pivots on the tridiagonal matrix Tl'

Other Krylov subspace methods for solving indefinite systems are

derived by using different subspaces and/or a different characterization of

the approximate solution vector at the j-th step. Two important. classes of

algorithms are:

1) oX; minimizes lib -As over all S e:K1 (b;A).

These methods were discussed by Rutishauser [35], Reid [33] ( versions

4,5,6, and 8 of the CG algorithm ), and Paige and Saunders [28]

(MINRES).

2) over all s e:Ki(Ab :A).oX; minimizes II oX -S

The feasibility of methods of this type was first recognized by Fridman

[7], his algorithm is however unstable. Fletcher [6] (orthogonal direction

algorithm ). and Stoer and Freund [38] ( SF-method present stable ver-

sions of Fridman's method. Fletcher also shows that the vectors xfQ,

which are occasionally used in SYMMLQ, are identical to the iterates in

his method.

All 

these methods do have their relative merits in terms of savings in

storage. number of operations. or in terms of applicability to certain types of

problems. However they are all iterative in nature and, since they all at least

implicitly involve the Lanczos algorithm. they will all suffer from the same

type of errors in finite precision arithmetic.

It is important to realize that the proposed algorithm LAN. although it is

equivalent on an abstract level to the various version of CG differs radically in

its practical implementation from all the methods mentioned. This radical
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difierence lies in the storage of the Lanczos vectors q l' q 2' ...,qj' By keeping

them and maintaining orthogonality among them, LAN actually computes

something like an approximate factorization of the matrix A. LAN therefore

can be looked upon as an intermediate method in between direct and itera-

tive methods. It is iterative in the sense that implicitly at each step an

approximate solution vector is updated and improved. and it is direct in the

sense that as a byproduct the factorization of a low rank approximation to A

is computed. The increased cost of LAN as compared to CG therefore is

justified if the Lanczos vectors can be used for subsequent right hand sides in

a similar fashion as the once computed triangular factors in Gaussian elimi-

nation are used. This question is pursued further in section 1.4 and in the

numerical tests. CG and SYMMLQ were introduced here in some more detail.

because they will be used in Chapter 4 for numerical comparisons.
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1.3. Convergence Properties.

From section 1.1 it is clear that the Lanczos algorithm replaces a com-

plicated problem by a simpler one, but it is not evident that it is also

smaller, i.e, that the residual norm becomes small already for a j «n. In

the general case we only know from the minimizing property of %i that for

positive definite A the error II % -%i II A is monotonically decreasing with

or the residualincreasing j. This does not imply that the error" % -%j

norm lib -Ax; /I are monotonically decreasing. In fact it is typical for the

algorithm IIrj IIthat oscillates it

decreases.

Theas behavior of

11% -%j II. 11% -%j IIAI and II b -Axi II for a sample run of LAN is shown in Fig-

ure 1.1.

For positive definite A it is possible to derive an a priori estimate on the

number of steps required to reduce the error in the energy norm by a cer-

tain given factor. Since xi e:Kf (b ;A), xi can be also expressed as xi = r.>(A)b,

where ~({) is a polynomial of degree j-l .Denote by pi the set of polynomials

of degree ~ j and by P6 = fc.> I r.,e:pi I r.>(O} = 1~. Then using the minimizing

property of xi one obtains

11% -%j IIA = min 11% -1T(A)b IIA = min IIA-1b -1T(A)b IIA
7rEpi-1 7rEPi-1

= min II (I -1T(A)A)A-1/2b II ~ minll r.>(A) II 11% IIA
frEPi-l fo)EP~ (1.3.1)

Now let the spectrum of A be contained in the interval [v..u] with 0 < v ~ .u.

Then

II % -%i II A ~ min max I r.>{A) I

II%IIA ",e:p~).e:[\I,IJ.]
(1.3.2)

This min-max problem is solved by the Chebychev polynomial Ti of degree

adapted to the interval [v..u] and normalized so that r.>(O} = 1 (c.f. Rivlin [34]).
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1% -%1 I'A~
1/% I/A (1.3.3)

tions

1 2 ( ~-1 \;
= ~+17

-~+ (~_2;-~ 2 (~":)i
~+1~ ..fi+l {1.3.4}

Ti(~ 1,u-v

where IC = 1!:- is the spectral condition number of A. In order to reduce the
v

initial error by a factor of O. has to be chosen such that

2( ~~)j ~ t5~+1 (1.3.5)
i.e.

ln2-1n6'

In (~~)
..fiC-l

j~
(1.3.B)

(1.3.7)j~~ln~
0"

2

The number of steps needed in order to reduce the error in the A -norm by a

given factor is according to (1.3.7) proportional to the square root of the con-

dition number of the matrix: A

The bound derived here is sometimes a very crude estimate, as the

example in Figure 1.1 shows. But in this generaliy it is the best possible. A

priori bounds of this type can be refined in two ways, by using more informa-

tion about the polynomial1r (cof Greenbaum [10]) or by using more informa-

tion about the spectrum of A (cf. Axelsson [2]). Atlestam [1] reports an
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extension for the indefinite case. The resulting bounds are however no

improvement over bounds directly obtainable by considering A- Az: = A -b.

1(10

a prion Istim-ale

~
~
~.~~
~
co

~n
~

10--2
a7TOT norm.

A -11.0rm,
oj the error

10--'
residual nann

20 eo40 60

La.nczos Steps

100

Figure 1.1. Behavior of the Error inVarlous Norms for a Sample Run of IAN.
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1.4. Updating the Residual Norm and Solving the Tridiagonal System.

We mentioned already in section 1.2 that Ti/i = .8181 has to be solved in

a stable way. since for some k ~ j the matrix Tk; may be very ill-conditioned.

particularly when A has both positive and negative eigenvalues. In this case

the LDL. factorization of Tj may break down or give unreliable results. Since

the updating of the residual norm according to (1.1.12) also requires the fac-

torization of T;. both tasks can be treated simultaneously. Here we want to

use the QR -factorization in order to achieve this task.

The QR-factorization can be accomplished in an efficient way by using

fast scaled rotations (Hammerling [11]. Parlett [29,pg. 100-104]). Since we

are not interested in a similarity transformation of Ti' but only in a reduc-

tion of Tj to upper triangular form. we simply premultiply Tj and simultane-

ously the right hand side .81e 1 by matrices of the type

,.. -1

1 ,..
1 -0'

0' 1
(1.4.1)or

1
~~

Let us call the matrix on the left of type I and the matrix on the right of type

11. The scalars 0' and T in (1.4.1) are chosen to reduce the subdiagonal ele-

".\ < 1. This enhances the stability of the reduc-types such that I (J I ~ 1 or

tion.

If we consider in detail the i-th step. we obtain for type I:
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i~-Ui+l.8i+l ~i+l-Ui+la.\+l -Ui+l.B\+2

V\+l~+.B\+l U\+lPi+l+a.;.+l .8i+2
0 ~\+2 a.;. +2

=

and for type n

'7"'+1"ii,-.8'+1 '7",+IP,+l-o.,+l -.8'+2F' 

+'7"'+1.8, +1 p,+ 1 +'7"(+10.'+1 T(+ 1.8'+2
0 .8'+2 0.,+2

-:1 0

""+1 0
0 .

'i+lI 
1

0

=

In order to reduce the subdiagonal element to zero we have to set for type I:

(1.4.3a)

and for type n:

(X:, (1.4.3b)a, + 7",+1,8,+1 = 0 ,i.e. I '7"'+1 = -

< {3i+l' Note that inHence we choose type I if .8'+1 ~ I a, I. and type II if I a,

both case we change the diagonal element in position (i+l,i+l), and for type

-indicates theseII the super diagonal element in position (i +1.i+2). The

r 11i
]= l7'1t+l I

-ai+l1 r~i 1
1 J loJ = (1.4.4a)r 1

lO'\ + 1

-11 r'i'j,l
7'i+1} lo} =

r 1]\ 1
= l77'\+l! .

["';'
(1.4.4b)
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Therefore 1,-, < 1 indicates that a scaled rotation of type II was performed

at step i, and 7", I ~ 1 indicates a scaled rotation of type I with O'i = 1/7",.

In order to update the residual norm we just update the quantities

:a:,J P'+lJ and 71, as we go along with the Lanczos algorithm. Then the residual

norm according to (1.1.12) can be found as ,8'+1 I?'}, 1"5:, .The nice feature is

that there is no need to keep the ail Pi' and 'Tli' These quantities can be

e.g. the"D.i can be found from the relation ai+1"i+l.Bi+l = O. or Ciil1"i+l+.Bi = O.

Similarly we can find :8'+1 and "7,. The algorithm for the updating procedure is

given in Table 1.3. where only four variables a,p.'r1. and 'r1o~d are used. The

corresponding algorithm for the back substitution is given in Table 1.4.

Table 1.3. Algorithm for Updating the Residual Norm.



20

Table 1.4. Back Substitution Algorithm for Solving T".f; = .Ble 1.

The actual implementation can be simplified further. for example it is

possible to use only two if-statements per loop. Finally it should be noted

that this idea is not restricted to the special right hand side .Ble l' i.e., it is

possible to implement an algorithm for solving symmetric tridiagonal sys-

terns based on scaled rotations, which uses only one extra vector of storage

(for 1"), and leaves the elements of the matrix unchan£ed.
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1.5. Initial Guess, Starting Vector, and Treatment of Several Right Hand

Sides.

So far we have concerned ourselves only with the case where the system

A:r; = b had to be solved, and no additional information was available. In many

applications, however, an initial guess Zo for the solution is available.

standard procedure is then to write % = %c + %c. where %c is a correction to

the initial guess, and to solve

(1.5.1)Axe = TO = b -Axo

instead of the original equation.

One may ask whether there is something more sophisticated which can

be done when a good guess is given. for example. one might want to start the

Lanczos algorithm with zoo i.e. set q 1 4- %0/11 %0 II. It is however easy to check

that even if Xo were the exact solution. the algorithm would not recognize

that and would proceed until the residual norm becomes smalL Another

suggestion is to use a starting vector which has large components in the

direction of eigenvectors corresponding to the small eigenvalues of A. But in

general it is not advisable to use any other vector than the right hand side b

as a starting vector for the Lanczos algorithm for the following reason.

pose we used the vector g. where g is an arbitrary n-vector as a starting vec-

tor for the Lanczos algorithm. Then the computation of the residual norm

according to (1.1~11) must be modified to

r. = b -A Q .r.-1 Q..bJ J J J

= b -(Qj Tj + .Bj+1Qj+1Sj jTj-1Qib

- .B -T -1 Q-b= b -Qj QjB -j+lQj+1Sj j j

(1.5.2)= (1 -Qj Qjjb -.Bi+1Qj+lrJ'j
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where rpi denotes the j-th component of the vector hi' solution to Tihi = Qi~'

The important difference to (1.1.11) is not that Q;~ is now a full j-vector, but

the additional (1 -Qj Qj)b -term in the residual. This term accounts for the

fact that in the general case the right hand side is not necessarily contained

in the Krylov subspace K", and (1 -Qj Qj)b is just the orthogonal complement

of b. If 9 is not related to b I there is therefore no reason to hope that by

some coincidence II (I-Qj Qj}b II might be small for; < n. In other words, we

want b e:Ki for small j. Unless we lake ql = b/.Bl' the only way lo guarantee

this is by choosing a q 1 such that 1T(A}q 1 = b, where 1T is some polynomial of

degree j-l. This however requires to solve a system of linear equations. which

is even more complicated than the original one. In general there seems to

be no better alternative to chosing the right hand side as starting vector,

and it appears that given an initial guess .2:0. it is best to utilize it as in

{1.5.1}, and then to proceed with the Lanczos algorithm using b -Azo as start

ing vector.

This discussion is of certain relevance for the treatment of a sequence of

right hand sides. Let us consider the case where we have stopped the first

Lanczos run for solving Ax (1) = b (1) at step j. because the residual became

negligible. The Lanczos vectors Qj and Tj are then still available and can be

used for computing an approximation to the solution %(2) of the problem

Ax (2) = b (2) (1.5.3)

where b(2) is a new right hand side. We can find an initial approximation %d2)

to X (2) from span (Qj) as follows:

XJ2) = Qj Tjl Qj-b (2) (1.5.4)

This is just (1.1.10) for the new right hand side b (2). We have to form Qib (2),

which is now in general a full j-vector. then solve Tjhj = Qj~(2), and finally
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assemble %62) = Qjhj" The initial guess %J2) will be utilized as outlined above.

i.e. we compute a solution %,(2) to Az,(2) = r62) = b (2) -Az62) by starting a new

Lanczos run. The numerical results in Chapter 4 indicate that this second

run of the algorithm will need considerably fewer steps than did the first run,

provided that the second right hand side represents a physically related

problem. For an arbitrary right hand side it is not clear that spa.n (Qj) is a

good subspace for approximation, and there may be little to be gained from

computing %62). In this case it will be better to use a more sophisticated pro-

cedure for the treatment of consecutive right hand sides. In [30] it is

described how the Lanczos vectors from the second run can be kept orthogo-

nal to the already computed Lanczos vectors from the first run. This algo-

rithm will not only reduce the number of Lanczos steps for the second right

hand side. but it will also provide an orthonormal basis for a larger subspace.

which can be used for the third right hand side, and so on.

However it should be clear from the initial discussion in this section that

it does not pay simply to continue the old Lanczos recurrence from the first

right hand side. and wait until the residual norm becomes small. because we

cannot expect that b(2) will be well represented in Ki (b(l);A).
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2. ANALYSIS OF THE snlMETRIC LANCZOS ALGORITHM: IN :n~ :PRECISIO~

A Mathematical Kodel of the Lanczos Algorithm in the Presence of

Roundoff

Most error analyses start out by making some assumptions on the

roundoff errors which will occur when elementary operations like addition,

are carried out in floating point computation with relative precision E.

Based on these assumptions upper bounds on the errors in vector inner pro-

ducts, matrix-vector multiplications. etc., are derived or the reader is

referred to Wilkinson [40]. After providing these tools then finally the object

of analysis itself is approached. Lengthy and complicated derivations finally

yield error bounds which are rigorous but, in most cases, unrealistically pes.

simistic.

The error analyst's dilemma is that be has to take into account any pos-

sible contrived worst case example at each step in his analysis in order to

make it rigorous, but he also knows that this combination will hardly ever

By including all these cases it is not only more compli-occur in practice,

cated to read and understand the analysis. but it is also difficult to prove

facts which appear to be "true" from practical experience with an algorithm.

We try here to find a way out of this dilemma by using a different

approach. In this section we are going to state a set of assumptions on the

behavior of the Lanczos algorithm in finite precision. These assumptions con-

stitute a model for the actual computation. A model which includes features

(the essential ones in my opinion), but discards others (the irrelevant ones).

of the resultsOn this model we build a rigorous analysis. The simplification

and their relation to the observed behavior of the Lanczos algorithm must

eventually justify our choice of model.
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quantities can differ greatly from their theoretical counterparts.

recurrence (1.1.2) between the Lanczos vectors at the j-th step can be writ-

ten

.Bj+lqj+l = Aqj -ajqj -.8jqj-l -J j
(2.1.1)

and the aj"sj,qj denote!r..Qm ~.Q.D. the corresponding computed quantities.

As in (1.1.8) the first j equations (2.1.1) can be written in matrix form

AQj -Qj Tj = .8j+lQ;+lej- + Fj
(2.1.2)

./j). A bound on IIFjllwhere the nxj matrix F; is given by F; = (f l,f21 .

depends on the specific implementation of the Lanczos algorithm. and on E

the machine roundoff unit. Parlett [29, pg.268] reports that no exception

has been observed to the assertion that

IIFi ~ EllA (2.1.3)

This claim is supported by a study of

! 

i II. reported in section 3.1. In the fol-

lowing analysis we assume that (2.1.3) holds. i.e. that the local errors are at

roundoff level.

Let the j xj matrix: W j = (r.>\ k) be defined by

.Wi = Qi Qi (2.1.4)

Ideally the Lanczos vectors should be orthogonal. i.e. W; = I;. But this rela-

tion is completely destroyed by the effects of finite precision arithmetic. No
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implementation of the Lanczos algorithm as described in Chapter 1 yields a

small a priori bound on II Wi-Ii 11. in fact the elements of Wi -II can become

as big as 1. The computed Lanczos vectors do not only loose orthogonality

but become linearly dependent to working precision. The growth of the ele-

ments of W;-IJ will be referred to as the loss 0/ orthogonality among the

Lanczos vectors. Let the j first Lanczos vectors CJ l,q 2- '1i satisfy

I q(.qj; I .s: "'i .(2.1.5)
.j; k = 1. ...j; k F j and 0 ~ "'i ~ 1. The smallest "'i for whichfor i = i. .

{2.1.5} holds will be called the level of orthogonality among the Lanczos vec-

tors. If t.)i =...re, then the Lanczos vectors will be called semiorthogonal.

Clearly, if r.>j = 0 the vectors are orthonormal. The following example illus-

trates the typical loss of orthogonality as the Lanczos algorithm proceeds.

-<

Figure 2.1. The Loss of Orthogonality among the lanczos Vectors.

In Figure 2.1 the level of orthogonality among the Lanczos vectors is plotted
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on a logarithmic scale for the first 55 steps of a run of the algorithm with a

matrix of order n=961. resulting from an approximation to Poisson's equa-

tion on the unit square with 31x31 grid points. The starting vector is

ql = {1.1. 1)-/V60.

Some more assumptions are necessary in order to simplify the technical

details of the analysis of the loss of orthogonality. It will be assumed that the

Lanczos vectors are exactly normalized,i.e. that

.qk; qk; = 1 (2.1.6),fork=l,"'j

and that locally the level of orthogonality among the q~'s is of the size of the

roundoff unit, i.e. that

(2.1.7)Iq':+lqA: I ~ El ,Jor k = 1, ..j.

Here f:l is some constant 1 » f:l > f:. In practice it turns out that qj-+lqj occa-

sionally may become large if Pi+l is small, or equivalently if the angle

between Aqj and qj is small. This is actually not a problem peculiar to the

Lanczos algorithm. but of orthogonalizing two vectors which form an small

angle. It is solved by reorthogonalizing qi+l immediately (within the Lanczos

step} against q; if .8;+1 drops below some threshold. We therefore assume

that tl is a modest multiple of the roundoff unit. As long as tl«..J""i the

actual size of El is not important for the following analysis. Similarly the

later analysis will show that roundoff errors in the normalization of the qj'S

are inconsequential for the loss of orthogonality.

Finally let us assume that

(2.1.8)no .8;+1 ever becomes neglible

This is almost always true in practice. and the rare cases where a .8;+1 does

become small. are actually the lucky ones. since then the algorithm should
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be terminated, having found an invariant subspace.

(2.1.1)-(2.1.8) constitute the mathematical model of the Lanczos algo-

rithm which we are going to investigate further. The goal of the remaining

chapter is to identify a mechanism which causes the loss of orthogonality in

the Lanczos algorithm, and then to analyze the algorithm in the light of this

new understanding. The results will help to clarify the role of the ..ri thres-

hold, which appears both in Parlett and Scott's [32] and Grcar's [9] work.

The insight will also lead to a new orthogonalization procedure. which will be

discussed in the Chapter 3.
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2.2. The Loss of Orthogonality.

orthogonality is lost.

recurrence formulas. We follow his ideas and express the loss of orthogonal-

ity in terms of comouted quantities. Thus we obtain a simpler and easier

understandable recurrence formula. This is done here in form of Theorem

2.1. Paige's main result concerning the loss of orthogonality then immedi-

ately follows from Theorem 2.1.

ment. Suppose the algorithm was carried out for j steps without any error

and the vectors q 10 ..,qj were perfectly orthogonal. Now at the j+l st step

a small error occurs, such that qi+l is no longer orthogonal to the previous

Lanczos vectors. From then on the algorithm is again continued without

would no longer be orthogonal to the vectors q 1. ..,qj-ll because qj+l was

not orthogonal to them. The same is true for all consecutive Lanczos vectors.

Th§ ~ introduced ~ ~ propae:ated iq future Lanczos vectors.

Now if two consecutive Lanczos vectors qk-l and qk deviate slightly from

their correct direction then of course the vector Aqk will be also slightly
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will now additionally be orthogonalized against already deviating vectors and

thus the resulting qk+l will differ even more from its true direction. Once

introduced. the error is thus not only propagated, but depending on the

geometry of the qj'S it may be additionally amplified.

The loss of orthogonality therefore can be viewed as the result of an

amplification of each local error after its introduction into the computation.

The following theorem is the arithmetic equivalent of the geometric con-

siderations above. It quantifies precisely how the local error is propagated in

the algorithm, and how the level of orthogonality rises due to the mechan-

isms of the algorithm. It is the core of our analysis.

Theorem 2.1. The elements r.>i k of the jXj matrix Wi = Qj-Qi satisfy the fol-

lowing recurrence

c.>kk = 1 for k = 1. . j

for k = 2, ' j (2.2.1)c.>kk-l = ~k

.8i+1"'i+1 ~ = .8~+1"'i ~+1 + (a~ -ai)"'i~ + .8~"'i ~-1 -.8i"'i-1 ~ + qi.f~ -q:f i

for 1 ~ k < j .and "'i k+l = r.>k+l i' Here r.>kO = 0 and Ek = q;qA:-l'

Proof. Write (2.1.1) for j and for k:

(2.2.2),Bj+lqj+l = Aqj -cxiqj -,Bjqi-l -fj

(2.2.3)PI: + 1 ql: + 1 = Aql: -a.1: ql: -.81: ql: -1 -f I:

Fornling q;(2.2.2) -qj.(2.2.3) and simplifying yields the result

Theorem 2.1 was already published by Takahasi and Natori [39], but

rediscovered here independently.



31

(2.1.1) by Q;:

below the diagonal, and let Wl,w21 ...,wi bet the columns of Rio And let

Wj+l == Qj.Qj+l' Then from (2.2.4) it follows that

.8j+1Wj+l = Tjwj -ajwj -.8jWj-l + gj (2.2.5)

where gj = Fjgj -Qjf j' Equation (2.2.5) could have been obtained directly

from (2.2.1), by writing (2.2.1) in vector form for k = 1, ...j. From (2.2.5)

we can obtain an estimate for the loss of orthogonality.

IIAII)

(2.2.6)(2.2.7)

at each step. A small .8;+1 will cause a great loss of orthogonality. A Lanczos

run, which has rapidly decreasing or greatly varying .8\ 's will therefore suffer

merely initiated by the local error f i. The growth of the elements of Wi

depends mainly on the ai's and (3\'s. It is therefore definitely not due to an

accumulation of roundoff or cancellation errors. Once the G.>jk have grown to

Paige [25] puts considerable effort into analyzing computational vari-

ants of the Lanczos algorithm in order to determine among several possible
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by the starting vector q l'

given by TiSi = Si0j. where OJ = diag(~p>. ~}f». Si = (sp> sf»,

and Sj- = S-I. and define the vectors Yi = Qis\ for i = 1.
..j. Note that con-

trary to (1.1.13) we consider here the exact eigen decomposition of the com-

puled Ti. Therefore the ",ji) and YiCi) should be referred to as the computed

Ritz values and vectors. They may differ from their ideal counterparts as

defined in (1.1.13). Especially there is no reason to expect the computed Ritz

vectors to be orthonormal. Nevertheless we will refer to them here simply as

Ritz values and vectors. since no confusion with the ideal quantities is likely.

Furthermore let u;i = e;.siU), the bottom element of the eigenvector SiC;). and

let the eigenvectors Si(j) be normalized to make O'ji positive,

With all this notation the remaining analysis becomes quite simple. Con-

sidering the first steps of the algorithm, the corresponding instances of for-

mula (2.2.5) can be combined in matrix form as

(2.2.8)R . +l W. +l e.. = T.R. -R. Ti + G./"'J J J J J J J

where Gj is the strictly upper triangular part of FiQj -Qj.Fjo Forming

si-{2.2.8)Si one obtains
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...B!+ly,Q!+lO'ji = s, Gis, :; "Y" (2.2.9)

This is precisely Paige's theorem:

Theorem 2.4. (Paige). Let 8jl 9j' Gjl O'ji II and 1ii be defined as above. Then

the vectors y, = QjS" for i = 1. .
.i satisfy

.-y, qj+l -

(2.2.10).

?'ii

.Bj+laji

Formula (2.2.10) describes the way in which the orthogonality is lost. We

have assumed in (2.1.8) that no ,8;+1 becomes negligible. If we also assume

that ")Iii is tiny like t II A I the only way that y,-qi+l can become large is by ai'

becoming small. As Paige pointed out

~ .8j+1CTji + EIIAI!Ayi -Yi~i [I = IIAQ;si -Q;Si~i = II.Bj+lqj+leis,+FjS,

and so a small ai' indicates that (~,. y,) is an approximate eigenpair of the

matrix A. Paige's theorem therefore can be stated as: loss of orthogonality

implies convergence of a Ritz pair to an eigenpair.

Lemmas.

In this section we will state and prove several Lemmas. which will be

needed in the later analysis of the Lanczos algorithm. These Lemmas are

mainly concemed with certain properties of the matrix W;=Q;Q; and related

matrices. and are therefore completely independent of any properties of the

Lanczos algorithm.

Let the jxj matrix W be given by W = ("'ik). with "'ii=l for i=l, ...j,

Then define r.> = max I r.>~
1$\ ,k$j
\,.k

W + = (l-r.»Ij+r.>ee., »7- = (l+r.»Ij-r.>ee -, where the j-vector e -= (1.1. ...1).

and-ls(.)\ksl for i~k. i,k = 1. ..j.
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matrix W.

Lemma 1.

a) Al(W) ~ 1-{;-1)(.).

b) Aj(W) ~ 1+(.;-1)",.

c) II wll ~ 1+(j-1)".

d)

1W-lil ~ 1-(; -1)r;;"

Proof. Application of Gershgorin's theorem.

1 1Lemma 2. Let r.> ~ 2 ~ Then LL. = W the Choleski factorization of W

exists and

II L II = II L II ~ 2

IlL-III = IIL--II ~ 2

Proof.

L II

Lemma 3. The Choleski factor L+ of the jxj matrix W +

(2.3.1)w+ =

where 0 ~ Co,) < 1, is given by
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"'2
'7f -1

~
6A: = 6A: -1 -

"'2'" '" 1]1:, -11lk = 1]1:,-1 --
6.t;-1

~ = U_-~)(!+(k -1}&:e l+(k -2)~ k = 1, 'j

(l-GJ}GJ-'7JA: -l+(k -2}GJ . k = 1, .j-1,

Finally Ok and "lk are obtained from

~

~
8,

11 

-r.>I-r.> 
1

w- =

l-'"

where 0 ~ CJ < 1. is given by





where 1] is a real i

formed by the ~ and ,8,. It is important to note the following fact at the

However for the same q 1 and

Example. Consider

that the sequence of Lanczos vectors computed from A is in any way close to

outset of any further analysis: If a matrix A is close to A this does not imply

analysis of the Lanczos algorithm: the Lanczos vectors Q; and the matrix Ti

2.4.

one obtains that

Hence q-;q 2 = 0 independent of 1]. and even a small 1-

tors

matrix may therefore result in totally different. i.e. orthogonal Lanczos vec-

There are two quantities at hand, which could be the object of an error

of the simple 1

Aql

.Aql

eter. Then the first Lanczos step yields:

fl 1] 01
A = ~ 2 31

lo 3 4,\

fl 0 1}1
A = 10 2 3

h 3 4.

fo1

'Cil=Q;AQ1=1 ;q2=l~I'

al = 1 ;

algorithm.

fl1
ql = l~)

(01 q2 = ~)

the sequence of Lanczos vectors computed from A, as the following example

in the

38

f11

=~

l
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"'u = 1 fork=l,"'j

(3.1.2)r.>~ ~-1 = 'IJI~ fork=2,'..j

(lJj+l.t = OO:-:-[.B~+l(IJj~+l + (a.k-a.i)"'j~ + .Bkr.)jk-l -.Bjr.)i-lk] + ~i.t
, ,

1

for 1 ~ k < j .and "'i k+l = "'k+l i' Here "kO = 0, and ~ik and "+"k are certain

random numbers. which have to be chosen appropriately. From now on we

will refer to the r..Ii~ 's computed with (3.1.2) as the computed or estimated

orthogonality components, in contrast to the true components which are

given by the inner products q;#qk'

Formula (3.1.2) can be regarded as a simulation of how the loss of or tho-

gonality would occur on a different. machine which generated numbers ~jk

and 1/tk as actual roundoff errors. From our interpretation of Theorem 2.1 we

concluded that the loss of orthogonality mainly depends on the CXj and .Bjl

and from Theorem 2.3 and 2.4 we know that the computed (Xi and .Bj are

exact up to roundoff. Therefore the computed loss of orthogonality from for-

mula (3.1.2) will behave like the true loss of orthogonality as soon as the r.>;k'S

reach the critical region of about ..j'i,

This is illustrated by the following examples, where we examined the

dependence of formula (3.1.2) on the choice of ~;k and 'I/Ik. For a matrix of

order n=12B, which is part of the matrix in Example 1.Chapter 4, and with

starting vector q; = (i i)/ vT28. we determined first the true loss of ortho-

It turns out that for this matrix the Lanczos vectors remaingonality.

semiorthogonal for 71 steps. Then we computed in two series of experiments

the values for c.>j~ with (3.1.2). First we chose 1/I~e:N(O,t). (i.e.. we chose for

the '1JIk' s a sequence of normally distributed random numbers with mean 0

and standard deviation t}, and ~,1: E:N(O,lCt}, with IC = 1.0. 10.0. 100.0. 1000.0 .

Then we kept ~ik: fixed and varied 'I/Ik:' The true and the estimated loss of
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orthogonality are plotted in Figure 3.1.

10-S!

"'.ri

~

t-.
~~
~

~
~
~
0

(Q
0
~
f..

c2'
10-1e

10-18

20 40 60

Lanczos Steps

80 100

Figure 3.1. True and estimated level of orthogonality for various choices of ~jk

0 -True level of orthogonality

-Estimated level of orthogonality. IC = 1.0

2 -Estimated level of orthogonality, «: = 10.0

3 -Estimated level of orthogonality. IC = 100.0

4- -Estimated level of orthogonality. IC = 1000.0
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10-81

~

lO-e

-1

Vt
10-91

~I

-1

10-121 -j

fT/~~~:~=~~-"'"

~

10-ISII

10-18 ~

40 60

Lanczos Steps
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Figure 3.2. True and estimated level of orthogonality for various choices of 'I/Ik'

(Graphs labeled as in Figure 3.1.)

Figures 3.1 and 3.2 show that the estimated level of orthogonality with

formula (3.1.2) reflects quite well the qualitative behavior of the true level of

orthogonality. It is important to see that although, due to an overestimate of

the error terms the computed level of orthogonality lies initially above the

true level of orthogonality, the curves move very close together when they
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reach the critical ~ region. Even the curve with the largest overestimate

reaches the ~ threshold only three steps to early at step 68. In spite of the

dependence on the random terms. (3.1.2) therefore appears to produce a

quite accurate estimate for the level of orthogonality.

We repeated these tests with the example from Figure 2.1. In this exam-

pIe the level of orthogonality reaches the threshold of Vt after 11 steps. The

behavior is shown in Figures 3.3 and 3.4.

to-.
~~
~

c""-
~
~
c

CQ

(Graphs labeled as in Figure 3.1.
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10.

100

10

l.,f'iI

10-16

5 10
Lanczos Steps

2015

Figure 3.4. True and estimated level of orthogonality for various choices of 'I/I~ .

(Graphs labeled as in Figure 3.1.)

The conclusions we can draw from Figures 3.3 and 3.4 are the same as

from Figures 3.1 and 3.2. No matter whether the level of orthogonality

begins to increase early or late, the recurrence (3.1.2) yields a qualitatively

quite accurate estimate of the true level of orthogonality in the sense that

(3.1.2) signals at about the right Lanczos step that the '\I't"-level has been
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reached. These test also show that the recurrence is relatively insensitive to

moderate overestimates in the error terms for example, as Figure 3.1

shows, an increase in the estimate for the q/! ~ -q:! i-term by a factor 1000,

resulted in r.>jA; 's which reached the threshold only 3 steps too early. For a

practical computation of the loss of orthogonality with (3.1.2) in connection

with PRO it is therefore advisable to overestimate these terms somewhat.

At this point we could content ourselves with the analysis of these error

terms, since their direct influence on the loss of orthogonality is not too

strong. However, there is one incentive. which may make a further study of

these terms rewarding. It may be possible to compute (3.1.2) so accurately

that the direct computation of qj.+lqk can be saved and the values c.>j+l k can

be used instead in the reorthogonalization process.

In order to obtain more information about the behavior of the

qj-Ik; -q:lj-terms and qj-+lqk; it is quite useful to study first Illi II. For that

/ i III (Pi +1 t) in double precision 1 for test runs of thepurpose we computed

single precision Lanczos algorithm with a set of twelve test matrices. At each

step the loss of orthogonality was computed directly and a full reorthogonali-

zation was performed. when -.ri was exceeded. The algorithm terminated

either after 50 steps or when the residual norm was reduced by a factor of.
10-s. The tests were repeated for matrices of order n = 40, 160. 640, 960.

The following results were obtained:

IAll computations were carried out on the VAX 11/780 of the EECS Department, Computer
Science Division at ~e University of CaJifornia, Be~eley. For single precision computations the
roundo:ff unit E: = 2 4, for double precision E = 2 56,
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sland.dev.
0.5375
0.3786
0.6449
0.8887

no. of itemsmean
1.2531
1.1863
1.2304
1.3279

192
302

315
324

I

' 40

160
640

_960 I

Table3.1.11/,.II/(.e;+1~)

The following figure gives some more information about the distribution

of ~1.f III (.Bi+lt):

~.~
~-~
~
~
~
to-.~
~
~
~
to-.

60 2 4

Figure 3.5. Distribution of 111 ill / (.Bi+l~) for n=960.

/sll ~PS+IE. In noTable 3.1 and Figure 3.5 show that in all our examples

f; II was larger than 6(1;+1£. This means that in the examples con-case II

sidered here in most of the cases the evaluation of Aqj -ajqj -.Bjqj-l was

exact up to one unit in the last place.
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This information about Ills II is very helpful for the study of qs-/A: -q:, s,

Since gj and qk; are unit vectors, II/jIlRj,si+lt, and II/k;!IRj,sk;+lE:, we expect

that (qi-'k -q;, 1)1 (,sj+l+,sk;+l)Rjt. This expectation proved to be correct.

Th~ results of the test runs with the same test matrices as before are sum-

marized in the following table:

q;.f k -q:f;
Table 3.2. £(,8;+1 +.Bk+1)

Based on the results in Table 3.2 we decided to set

~;k = t(,8k+l +,8;+1)0 (3.1.3)

where ge:N(O,O.3). e is more than twice the largest standard deviation

observed in Table 3.2 and will therefore yield an estimate for g;-, k -q:,;

which will be too large in most of the cases. This is desirable for PRO accord-

ing to the discussion above

In order to determine some estimates for qj-+lqk we used the following

relation

(3.1.4)R -_ A ---I"j+lQjqj+l = qj qj -ajqjqj -.BjQjqj-l -qjf j

Therefore

(3.1.5)

where OJ = (q;- Aqj -o.j qj-qj -qj-J j)1 ,8j+11 and c5j is at roundoff level. If in (3.1.5)

the corresponding equations for j. j-l. ...are substituted. one obtains
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.82 .-
P-Q2Qi-1 + 6i .

i+1

where 6i is the sum of all remaining terms. We therefore computed the term

.qjqj+l = -
(3.1.6)

error of an inner product. The following results were obtained as before:

mean
-.001594

.004411

.004258

.006926

l stand.dev. -1- no. of itemsn
40 0.2893

0.3167
0.3066
0.09762

180
290
303
312

~

60 640

960

Table 3.3. .B; +1 q;#q;+1
.B2tn .

According to these results we choose

.82'I/Ik = E:n~'i'
.8;+1

(3.1.7)

where \fIe:N(O,O.6).

There is one more error term to be considered. After a reorthogonaliza-

tion has been performed. the terms qS-+lqk have to be reset. Ideally, of

course. these inner products should be zero. but here we expect them to be

at roundoff level. Again we performed a statistical study and computed

q;+lq~1 t for our set of test problems. whenever a reorthogonalization

occurred.

; 

stand.dev.

I 0.2412

I 0.3451
I 0.3743

0.6925

I 

mean i! 

.01389 I

-.01659

.02272

-.01703

no. of items
692
358
578
838

n
40

1960

Table 3.4. q;+lqjl g after reorthogonalization.
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Since the two vectors were already semiorthogonal before the reorthogonali-

zation, the values in Table 3.4 are quite small. and there is no strong depen-

dence on n. Based on this result we are choosing CJi+l~e:N(O.1.5)f: after a

reorthogonalization has been performed.
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3.2. The Behavior of the Computed Level of Orthogonality.

In section 3.1 we discussed how an estimate for the level of orthogonality

can be computed with formula {3.1.2} and appropriately chosen random

numbers for ~jk (3.1.3). 'I/I~ (3.1.7). and ~j~ after reorthogonalization (3.1.8).

In this section we will examine how well the thus computed '-',"k reflects the

behavior of the true level of orthogonality.

We tested (3.1.2) with several examples where a full reorthogonalization

was performed whenever one '->;~ became larger than the threshold of .v-i. In

Figures 3.6 and 3.7 the true level of orthogonality and the computed

estimated are plotted for two of the sample runs.

10-8

10-12

10-18

50 100 150
Lanczos Steps

Figure S.6.a. True and computed level of orthogonality for A = diag (12.22. 10002)

andq; = (1.1.' ...1)/..JT005.

..ri
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10-8
Vi

10-

10050 150Lanczos Steps

used in Figures 3.1 and 3.2.

orthogonality quite closely.
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repeated the sample run from Figure 3.8.a with a similarity transformation

of the diagonal matrix A. The starting vector was changed accordingly. We

obtained:

10-8

10-12
estimated

!.-,I/-- 

--"'"true
10-18

50 100 150
Lanczos Steps

-

Figure 3.6.b. True and computed level of orthogonality for a matrix

similar to A from Figure 3.6. a.

The level of orthogonality is different from Figure 3.6.a. Here the threshold is

reached about 10 steps earlier. This different behavior is due to the fact that

the tridiagonal matrix is changed slightly, and the change in as and ,B; in

This is not surprising.turn produces different orthogonality components.

However what is moreand consistent with the results from section 3.2.

important for our analysis here is the fact that in both cases computed and

true level of orthogonality agree well with each other. Their mutual relation

is not affected whether a diagonal matrix is used or not. So although diagonal

matrices are of course trivial examples for solving linear systems. it is quite



74

fore repeatedly use diagonal matrices as test examples.

tool for predicting the level of orthogonality. It would be even more con-

venient if the r.>ik; would be so accurate that the inner products qi-qk; would

not have to be recomputed. Let us recall that by Paige's Theorem (Theorem

. ( .. the vector 'Uj == Qj9j+l = 919j+l,929j+l'
.,Qj-Qj+l)- tilts towards an

eigenvector of Ti' when the corresponding Ritz value is about to converge

against eigenvaluean of A Let considerus thenow vector

Wj = (c.>j+ll,r.>j+12' ...,c.>j+l i). computed by (3.1.2). Earlier we expressed

the view that the computation of (3.1.2) can be considered as a simulation of

the level of orthogonality as it would happen on a different machine. where

the random numbers chosen for ~ik and 'I/Ik would be equal to the

corresponding actual roundoff error terms. Therefore Paige's Theorem will

also hold for Wj' i.e., Wj will have large components in direction of those

eigenvectors of Tj for which the corresponding Ritz values are about to con-

verge.

,'->j+lj)- behave in practiceHow U; = Q;-q;+l and w; = «(.);+11'(.)j+l 2- .

be from the figures in Tableseen

3.5.

For the matrix

A = 10sdiag (1, 1/2,1/3, 1/60) and the starting vector

q: = (1. 1 1);..f60 we computed for the first 10 Lanczos steps the following

quantities:
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CDS ~(Wj,sjj») cos 1:(Ujls,1J"»)Step cas ~(1.Lj.Wj) I/u/ II.
2
3
4
5
6
7
B

9
10

0.9899
0.0946
0.2475
0.4609
0.9188
0.9886
0.9982
0.9997
0.9999

0.8032
0.9603
0.9903
0.9994
0.9999
1.0000
1.0000
1.0000
1.0000

-

0.7105
0.2062
0.1808
0.4399
0.9159
0.9880
0.9881
0.9967
0.9999

I. 

O-:-53e-16

O.23e-15
O.96e-15

O.66e-14
O.63e-13
O.75e-12
O.11e-1O

O.lBe-O9
O.35e-O8

Table 3.5. Eigenexpansion of the Orthogonality Components.

Here s,li) denotes the eigenvector corresponding to the largest Ritz value of

TS' This example was chosen since after 10 steps the largest Ritz value of TS

has already converged to an eigenvalue of A. The first three columns of

Table 3.5 show the angles of 11.j and Wj with sjj). The figures show that with

increasing level of orthogonality both 11.j and Wj are tilted increasingly

towards sJi> and that upon convergence of the associated Ritz value all three

vectors practically point into the same direction.

These observation are not surprising. since they are just a consequence

of Paige's Theorem. Unfortunately the situation is not always as simple as in

consider the matrixTable 3.5. As second example wea

..-1/30.+1/30 +1/2.1) with a random startingA = 1000*diag (-1.-1/2.

vector. Because of the symmetry in the spectrum the Ritz values converge in

this example in pairs. The first pair ( -1 and + 1) converges after 15 steps. In

Table 3.6 below we summarize the corresponding angles. Here we denote by

Si the plane spanned by the two eigenvectors of Ti corresponding to the

largest and the smallest Ritz value.



76

cos 1:(wi,Si) cos ~('Ui,Si)Step CDS ~Uj.Wj} II Us II.

1.0000
0.9997
0.3765
0.6713
0.3471
0.7718
0.9132
0.9931
0.9988
0.9997
0.9999
0.9999
1.0000
1.0000

1.0000
0.9765
0.7777
0.8626
0.3039
0.6047
0.8948
0.9820

,

0.9965
0.9989
0.9998
0.9999
1.0000
1.0000

-0.1342

0.2279

0.8461

0.2406

0.6262

0.0910

-0.5386

-0.6622

-0.7200

-0.7966

-0.7466

-0.6982

-0.6927

-0.7352

0.43e-17
0.2ge-16I 
0.34e-16
0.18e-16
0.88e-16
0.30e-15
0.15e-14
0.62e-14
0.6ge-13
0.51e-12

2
3
4
5
6
7
B
9

10
11
12
13
14
15

~

O.2ge-l0
O.37e-O9
O.26e-OB

Table 3.6. Projection of the Orthogonality Components.

The results of Table 3.6 can be interpreted as follows: as both extreme Ritz

values converge, both Uj and Wj tilt increasingly towards the plane sj. How-

ever the angle between them does not tend to zero as before, but they make

a nearly fixed angle as they converge. The cas ~('UjIWj) seems to settle at

about -0.7 in this example. Some more runs with the same matrix and

different starting vectors showed the same behavior I only the angle between

Uj and Wj settled down at a different value for each run.

This behavior of u; and w; is consistent with Paige's Theorem. We only

know !JlM Uj and Wj will form a small angle with the subspace spanned by

the eigenvectors corresponding to converging Ritz values, but we do not

know ~ Uj and Wj will behave in relation to the individual eigenvectors of

Since in general at a given Lanczos step we do not even know how manyT.J
Ritz values are about to converge (unless we want to do a spectral analysis of

T; comparable to selective orthogonalization), there seems to be no easy way

to relate ui and wi either in terms of eigenvectors of Tj or directly.



77

might be possible to proceed analog to section 3.1 and derive some statisti-

cal estimate for the new level orthogonality, but this question was not pur-

sued further. The topic warrants further investigation
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3.3. Chasing Reorthogonalizations.

In section 3.1 and 3.2 we saw how to compute the level of orthogonality

with (3.1.2), and what information from the computed level of orthogonality

can be inferred. In this section we will discuss how this information is used in

order to decide when and against which past Lanczos vectors the current

Lanczos vector has to be orthogonalized.

From the analysis in Chapter 2 it follows that it is always necessary to

orthogonalize qj+l against some previous Lanczos vectors, if I q!+lq.t I >..ji

for some k. ...ri is the optimal threshold here. since it is the largest level of

orthogonality among the Lanczos vectors which we can tolerate and still

obtain accurate CXj I sand .B; I s. A smaller threshold would result only in more

orthogonalizations without any gain in accuracy. This is confirmed by numer-

ical tests (Scott [37.p.82]) in relation with the analysis of selective orthogo-

nalization.

There is another important idea concerning reorthogonalization. which

we can borrow from the method of selective orthogonalization [32]. Suppose

at step we decided to reorthogonalize qi+l against all previous qJ;, then we

will also reorthogonalize at step j+ 1 the new Lanczos vector q; +2 against all

previous qkJ no matter what the qj+lqk are. There is a direct justification of

this additional reorthogonalization through formula (3.1.1) By reorlhogonal-

izing at step j we make qj-+lqk = O(E:) for all k s j. Then

,Bi+2Qi-+2QA; = -,Bj+1Qi-qA; + 0(£) (3.3.1)

~..J"i before the reorthogonalization. then alsoBut if for some k,l Qi-+lq.e

qiqA: must have been comparatively large, i.e. almost as big as ..fE, since by

(2.3.7) there is a bound on the growth of the level of orthogonality. One

reorthogonalization by itself therefore does not help very much to reduce
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the size of qi.+2q~. If however two reortbogonalizations are performed in a

row, then formula (3.1.1) yields

.8S+2 QS-+2Qk = O(t)
(3.3.2)

and we can be sure that at least for the next couple of steps the level of

orlhag anality will remain small.

So far we always assumed that during one reorthogonalization the

current Lanczos vector was orthogonalized against. all previous Lanczos vec-

tors. But this is not necessary if our aim is to maintain only semiorthogonal-

ity. An important observation concerning the loss of orthogonality can be

drawn from Figure 3.8. Here plottedwe logarithmicon a
-q 4SQk. k = 1, . 42 for ofa the Lanczosrun algorithm

A = diag (1.4.9. . 1002) and q: = {1.1. . .1)/10.

I q:sq~ I

k

Figure 3.8. ! QS-+lqA;for fixed j and ~j.

Figure 3.8 shows the typical pattern in the loss of orthogonality. Usually only
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some neighboring qi.+lq~ have grown to about the ...ri level, whereas most

other inner products remain quite smalL 1n order to maintain semiortho-

gonality it is therefore only necessary to orthogonalize against selected

Lanczos vectors in the example given in the table it could be the first ten.

Since (3.1.2) gives a reliable prediction of the level of orthogonality the old

Lanczos vectors against which qj+l has to be orthogonalized. can be picked

with the help of (3.1.2). It is clear that an orthogonalization only against

> Vi is not successful. The same argument which wasthose qk with I Q,..+lqk

used to introduce two successive orthogonalizations at consecutive Lanczos

steps can be applied again. Formula {3.3.1} says that Q;-+lq,t depends on

Therefore it does not help to make only q;qlr.QjQA:+l.qjqk,.qjQA:-l' and Q;-lQA:

and g;+lgk small, also the neighboring gi-qk+l and q;qk-l have to be reduced

in order to make the orthogonalization useful, i.e.. not to allow qj-+lqk to

However, in order to keep these small for some morebecome large again.

Lanczos steps their neighbors in turn have to be small.

This situation can be expressed best in the following figure (similar to

the domain of dependence/domain of influence argument in numerical PDE):

0

0

0

0

0

k-3 a
k-2.
k-l.
k .k+l.

k+2.
k+3 a

.-smallc.>kj
a -large c.>kj

j j+1 1+2 ;+3 ;+4

Figure 3.9. Propagation of the Loss of Orthogonality.

Figure 3.9 shows that reorthogonalizations against single Lanczos vectors are

useless, since their effect is immediately wiped out by the neighboring large

The best strategy for chasing Lanczos vectors to reorthogonalizeterms.
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way due to the influence of unorthogonalized neighbors (cf. Figure 3.9). These

runs were repeated for different values of 17 Table 3.7 summarizes the

results for two examples. For each example we list in the first column the

number of orthogonalizations and in the second column the number of

recalls, i.e., the number of steps at which reorthogonalizations occurred.

Example I Example II

Orthogonalizations Recalls Orthogonalizations Recalls1}

624
520
526
507
478
504
576

620
756

26
21
17
15
12
10
10
10
10

1518
1178
781
675
617
672
705
843
925

40
29
22
15
11
9
8
8
8

I.,.J

Vi f

10-1-./£
10-2-./£
10-3-./£

10-4-./£
10-5-./£
10-6-./£ I

10-7...ri I

~

Table 3.7. Influence of the ~wer Bound '7} on the Reorthogonalizations.

is the matrix A = 104*diag(1.1/2,1/3 1/ 1000) and Exam-Here Example

..-49.5)

pIe II the A = diag (100.49.5.48.5., withis matrix both

q: = {1.1. Although the figures in the Table look1)/10 as starting vector

rather similar. the two examples are quite different. Example II has a uni-

form and equally spaced eigenvalue distribution, whereas the eigenvalues in

Example I have a large relative separation at one end of the spectrum and

are clustered at the other,

The minimum number of orthogonalizations occurs in both cases for

11 = 10-4. This can be explained as follows: if 17 is decreased further the

batches of Lanczos vectors become larger and more orthogonalizations are

made against vectors where the inner product q;+lqk is still quite small. If r]
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is increased then the batches become smaller, the effects of the reorthogo-

nalization are wiped out already after a few steps (c.f. Figure 3.9), and a new

reorthogonalization is necessary,

There is however a second cost factor which we have ignored so far. For

large examples it will be not possible any more to keep the Lanczos vectors

in fast storage. They have to be written into secondary storage. and every

time some of them are needed one has to scan through alllhe Lanczos vec-

The cost of the recall operation will depend on the system which is

used and it is therefore difiicult to compare it to savings in the orthogonali-

zations. The numbers in Table 3.7 suggest that the number of recall opera-

tions or rewinds of the tape with the Lanczos vectors is constant as long as

17 ~ 10-5..,fi and then increases only slowly. Therefore the optimal choice for

17 regarding both cost factors lies somewhere between 10-5.,.fi and 10-4.,.fi.

regardless of the precise relation between both cost factors In order to

~
determine an 1] independent from the machine used. we suggest 1] = £ 4. On

the VAX 11/780 this choice yields 17 ~ 0.2274*10-12. which is slightly smaller

than 10-4Y"i ~ 0.3725*10-12. This also seems to be a satisfactory choice in

~
the sense that 1] = E: 4 is "halfway" between --It (semiorthogonality) and t

(orthogonality to working precision) on a logarithmic scale. The examples

Table 3.7 were run again with this 1]. and the following results were

obtained.

.§..
Table 3.8. Results with 1] = F; 4.
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~
The figures in Table 3.B indicate that 1] = t 4 yields almost the minimum

number of both orthogonalizations and recalls. With this choice of 1] we have

finally determined against which previous Lanczos vectors the current Lanc-

zos vector has to be orthogonalized, and thus completed the definition of

partial reorthog onaliza tion.

A good insight into the mechanism of PRO can be gained from the follow-

ing Figures 3.10 and 3.11. Horizontal bars indicate the "batches" of Lanczos

vectors against which the current Lanczos vector is orthogonalized. The dou-

ble appearance of the bars corresponds to the fact that orthogonalizations

are always carried out for two consecutive steps.

[
"
..

~
~
~

.§..
Figure 3.10. Range of Reorthogonalizations for Example I, ?'} = t 4 .
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§
C')~
Q
fI)

~
~

.§..
Figure 3.11. Range of Reorthogonalizations for Example ll, 1] = E 4.

Let us finally summarize the results of the discussion of PRO in the form

of the following algorithm:
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Table 3.9. Algorithm for Partial Reorthogonalization.
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3.4. Some More Details on PRO.

There are two more topics to be discussed in relation ..nth PRO. One

concerns the question of the effect of PRO on the inner products of qi +1 with

those previous Lanczos vectors against which the current Lanczos vector is

D.Q.t orthogonalized. Let q'i+l be the current Lanczos vector before reorthog-

onalization and (compare 2.5.7)

I;
~EL(J)

(Q';+lQi;) QA:
qj+l = q'j+l -

(3.4.1)
Then for qt. l Et:L (j)

.,.qj+lql = q j+lql - ~
kEL(j)

{q'j +1 qA; )(q: qt) (3.4.2)

Since semiorthogonality is maintained, we know that I q;ql ~ "I/"i, and from

(2.3.7) we know that. I q'i.+lq~ I ~..J"i. Hence

q/+lqt = Q'j.+lqt + OCIL(j)ltIIAII (3.4.3)

and we do not have to worry that the level of orthogonality between the Lanc-

zos vectors unaffected by PRO may deteriorate. A similar argument was used

for SO and the corresponding Ritz vectors (Parlett [29,p.2Bl]).

Finally we want to mention that there is an easy way of avoiding the

second of the two consecutive recalls of the Lanczos vectors by utilizing

(3.3.1 Suppose we orthogonalized at the j-th step qi+l against qA:' Then at

the (j+1)-st step by (3.3.1

(:J'j+2Q';+2Qk = -(:J;+lQ;qQk + O(tIlAII) (3.4.4)

Since we orthog onalized in batches, also the inner products qj.qk +1 and qj.qk-1

are at roundoff level. and we obtain {3.4.4} for all vectors in the inleror of the

We do not have to be concerned about the two vectors, whichbatches.

border the batch. because we do not orthogonalize against them at the
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(j+l)-st step anyway. Therefore it is possible to compute already at the j-th

step the vector

Yi = -.Bi+l~ (q;qk,)qk,
k, (3.4.5)

where we sum over all ke:L(j) which are not on the edge of the batch. Then

at the (j+ l)-st step the second orthogonalization simply becomes

(3.4.6).Bi+2Qi+2 = ,B'i+2Q 1+2 -Yi

Thus at the cost of one extra n-vector the second recall of the Lanczos vec-

tors is saved. There are however no savings in terms of arithmetic opera-

tions. This device is therefore only useful if the recall of the L1mcZOS vectors

is expensive
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3.5. Comparison with Selective OrthogonalizaUon.

5.5.1. Maintenance of Semiorthogonality.

Selective orthogonalization (SO) was briefly fucussed in section 2.5 as

an alternative method for maintaining semiorthogonality. Practical numeri-

cal experience with SO for eigenvalue problems (Nour-Omid.Parlett.and Tay-

lor [23]) and for the solution of linear systems (Nour-Omid [22]) shows that

SO works very efficiently. Since SO maintains orthogonality with respect to

the Ritz vectors rather than with respect to the Lanczos vectors. it is also of

certain theoretical interest to compare both methods.

As a first example we chose the matrix A of order n =961 derived from

an approximation to Poisson's equation on the unit square with 31x31 grid

points We solved the system Ax = b. where b was chosen such that

z- = {1.1., i). both with SO and PRO. The corresponding algorithms were

stopped as soon as an approximate solution was found. which reduced the

residual norm by a factor of 10-10

.Some 

information of the runs with PRO

and SO is given in the following table.

Table 3.10. Comparison between PRO and SO. Example 1.

This example can be considered as typical for a two dimensional problem.

The amount of orthogonalizations in both cases was small and convergence
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occurred already after 50 steps. Both algorithms produced the same Q.('s

and Pi'S in agreement with Theorem 2.5. However the way in which this was

about the same time that orthogonality is going to be lost. and decide that

that PRO performs a reorthogonalization at about the same time when SO

performs the orthogonalization against the dominant Ritz vectors.

In order to understand PRO in terms of the Ritz vectors we computed

the vector v E:span (Qj) against which qi+l was orthogonalized during PRO,

e.g.
33

at step 40 the vector v = l:: (q' :lqk)qk' normalized it, and then
k=l

expanded it in terms of the Ritz vectors Yi- The results for Example 1 are

given in Table 3.11

Table 3.11. Expansion of PRO Vectors in Terms of Ritz Vectors, Example 1.

The results of Table 3.11 are again a verification of Paige's theorem. PRO

almost does the same as SO: a reorlhogonalization against the two converg-

ing Ritz vectors. However it also reduces at the same time components in

direction of the other Ritz vectors, where Ritz values converge only a couple

of steps later.

In order to understand the relation between PRO and SO better. we

repeated these numerical experiments with a different matrix. We chose as
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second example the matrix A = 100*dia.g (1,1/2,1/3,1/4. ...1/100) with

q: = {1.1.1. 1)/10 as starting vector. The algorithm was stopped. as soon

as an approximate solution to A7: = q 1 was found. which reduced the residual

norm by a factor of 10-8(~...ri). This is a very contrived and artificial example,

which was chosen on purpose, because an interesting pattern of reorthogo-

nalizations occurs already quite early. The results for this example are shown

in Tables 3.12 and 3.13.

~

Table 3.12. Comparison between PRO and SO. Example 2.

Step Components of v in direction of

Yn Yn-l Yn-2 Yn-3 Yn-4 Yn-5 Yn-6

11 -1.00 .14e-3 .2Be-5 .26e-6 .55e-7 -.18e-6 -.46e-7

.36e-6

.71e-5

-.15e-3

-.15e-l

-.15e+O

.9ge-3

Table 3.13. Expansion of PRO Vectors in Terms of Ritz Vectors. RYAmpie 2.
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PRO apparently cannot be easily interpreted in terms of the Ritz vectors.

The figures in Table 3.13 show that the reorthogonalization mainly occurred

in direction of the dominant Ritz vector, but that there was also a not

insignificant component in direction of the other Ritz vectors. PRO reduces

these relatively small components together with the needed orthogonaliza-

tion in direction of the dominant Ritz vector. It therefore prevents the

growth of the level of orthogonality in the direction of those Ritz vectors

already at. an early stage, and orthogonalizations against the second or third

Ritz vector (as one would expect in SO) occur only in a hidden way in PRO

(e.g. against Yn-l at step 30).

3.5.2. Comparison of Costs.

Let us go back to Tables 3.10 and 3.12 and compare the cost of PRO and

so. The longer list of orthogonalizations for SO is somewhat misleading,

because orthogonalizations against recurring Ritz vectors are very inexpen-

sive. They involve only two inner products and the recalling of

corresponding Ritz vector from secondary storage. Although SO appears to

be more expensive, because of a larger number of orthogonalizations. it is

actually not, which can be shown by counting the inner products involved.

Again we are faced with the question, how to relate the I/O cost to the

cost of the arithmetic operations. But even without giving a precise answer to

this question. we gained from a large number of examples the experience

that the cost of the two algorithms for orthogonalizations is comparable.

examples above favors PRO slightly, but there are also examples, where the

situation is reversed.

Also the overhead costs for SO and PRO are comparable. PRO needs two

extra j-vectors for the updating of the "'j+1 ~, which can be done in a(j)



93

operations. On the other hand SO needs one j-vector for the eigenvector of

~j and some extra vectors of dimension < j for analyzing Tj' One can deter-

mine the interesting Ritz values and (if necessary) the corresponding eigen-

vectors of T". in a(j) operations (31].

Hence it appears that neither method has a clear edge over the other

one. The differences between the two methods can be better understood if we

look at examples where either of them performs very poorly. The following

example are again contrived in order to present the extreme possible cases.

Let us first consider A = dia.g(1.2.3 999.2000). q; = (1.1 1)/~,

where for both SO and PRO the algorithm was stopped after 60 steps.

Table 3.14. Comparison between PRO and SO. Example 3.

Again we observe that reorthogonalizations in PRO occur about the same

step. when in SO an orthogonalization against the dominant eigenvector is

performed. Because of the wide separation of the dominant eigenvalue

~ = 2000 from the rest of the spectrum. these reorthogonalizations are,

contrary to example 1, the only ones, which are necessary in SO, and hence

can be performed very cheaply. PRO does not have this information available,

performs the more expensive reorthogonalizations. and needs about four

times as many orthogonalizations in order to achieve the same result..

On the other hand, the following example shows that also the opposite

matrixConsider thesituation occur.can
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A = diag(100,4B.5.47.5,
-47.5,-48.5,-49.5} and the right hand side

b = {100.4B.5.47.5. -47.5.-48.5,-49.5). Solving Ax = b we encounter the

special situation that the solution vector has equal components in direction

of all eigenvectors, and that the eigenvalues of A are evenly distributed (with

the exception of An). It is therefore not surprising that the Lanczos algo-

rithm needs n steps. when the stopping requirement is to reduce the residual

norm by ..;£. It is too cumbersome to list all the individual orthogonaliza-

tions in this example. Here SO turns out to be more expensive than PRO in

all respects. Because the algorithm terminates only for j = n. SO computes

a large number of Ritz vectors and performs orthogonalizations against

them. The situation does not improve, if we stop in SO the performance of

new orthogonalizations after a certain fixed number of Ritz values has con-

verged, and continue only orthogonalizations against already computed Ritz

vectors. Because all eigenvectors of A contribute equally strongly to the solu-

lion. such a procedure only delays the convergence of some of the Rilz vec-

tors and thus also delays the convergence of the algorithm.

This situation seems to be typical if we want to solve linear systems of

equations, since we have to wait until all eigencomponents of the solution

vector are well represented in spa.n (Qj)' This can mean that quite a large

number of Ritz vectors is converging without necessarily improving the

approximate solution. In this situation SO is forced to perform many orthogo-

nalizations, and also many recalls of Ritz vectors, whereas PRO can handle

the situation more efficiently. Besides SO is forced to compute Ritz values

and vectors, which are of no direct relevance for the solution of linear sys-

terns.
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computed Ritz vectors. Only cheap repeated orthogonalizations in direction

expensive as the first one. In addition to that PRO does not provide a priori

any information on the progress of the convergence of the Ritz values, and

would require the additional cost of computing Ritz values and vectors if

applied to the eigenvalue problem

Hence we can draw the conclusion that PRO appears to be more advan-

tageous for solving linear systems of equations. whereas SO is more appropri-

ate for the eigenvalue problem. This conclusion is preliminary and has to be

fortified by more numerical evidence
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4. NUMERICAL EXAMPLES.

The Lanczos algorithm with partial reorthogonalization (LANPRO) as

described in Chapter 3 was tested on several examples arising from finite

element approximations to problems in structural engineering.

corresponding stiffness matrices were computed using the finite element

approximation program FEAP [42,Chapter 23]. In all reported examples the

algorithms were stopped when the initial residual norm was reduced by a fac-

tor of 10-B.

Example 1. Here we consider a beam problem with one end encastre and one

end free. A finite element approximation using 80 elements with 3 degrees of

freedom per node yields the positive defInite matrix H257 of order n = 237

with about six nonzero elements per row. We solved the problem

H 237% = e 135'

which corresponds to applying a unit load to about the middle of the beam,

both with LANPRO and with CG. This type of problem is one of the most

difficult to solve with an iterative procedure. A comparison of the residual

norms for both methods is given in Figure 4.1

Figure 4.1 shows the typical behavior of the conjugate gradient algo-

rithm. which needs BBB steps (~3. 7n steps) to achieve the desired reduction

in the residual norm, whereas LANPRO needs only 158 steps. The mainte-

nance of semiorthogonality among the Lanczos vectors yields. as expected. a

large reduction in the number of necessary steps. This reduction is of course

not free -LANPRO needed about 7016 extra inner products for orthogonaliza-

tions in order to achieve this result.
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What is even more important. the maintenance of semiorthogonality

guarantees termination of the Lanczos algorithm after at most n steps. For

CG in finite precision there is no such guarantee and the algorithm may not

terminate at all.

Another advantage of LANPRO is the availability of the Lanczos vectors

for computing an initial approximation to the solution if consecutive right

hand sides have to be processed. We computed an initial guess for a couple of

new right hand sides according to (1.4.9), and then restarted the Lanczos

algorithm. The results are shown in the table below.

Table 4.1. Consecutive Right Hand Sides for E:xample 1.

CG has to start for each new right hand side completely from the begin-

ning and needs a full run (probably another 888 steps) in order to achieve

the required accuracy. This has to be contrasted with the numbers for LAN-

PRO in Table 4.1. The Lanczos algorithm obtains the solution for consecutive

right hand sides almost for free.

Ti:Yftmple 2. We consider the same beam problem as before, but use now 240

elements and obtain H95?' a positive definite matrix of order n = 957. We

solve the corresponding problem as in Example 1.

(4.2)H957% = e405 .

and obtain the following graph for the residual norms.
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ngure 4.2. Residual Norms for Example 2.

The conjugate gradients algorithm here needs 14.169 steps, an enor-

mous amount as compared to only 638 steps for LANPRO. Since this problem.

except for its size. is the same as Example 1. all the remarks ]made above

apply here. Also for consecutive right hand sides we obtain comparable

results. The savings in LANPRO are now even more dramatic,
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Number of Steps (LANPRO)Right Hand Side

12
12
12
12

414

405-8225

Table 4.2. Consecutive Right Hand Sides for Example 2.

1i:YBmple 3. Here we consider

..1).

(4.3)(H237 -2000)% = {i,l.

where H237 is the matrix from example 1. The shift of -2000 makes the prob-

lem indefinite. Because CG in general is not applicable to indefinite problems,

we compared our algorithm here with the algorithm SYMMLQ (c.f. section

1.2). The indefinite problem (4.3) causes no problem for LANPRO. and it com-

pares very favorably in cost with SYMMLQ which is more expensive per step

than conjugate gradients and needs here 2003 steps for convergence.
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Figure 4.3. Residual Norms for Example 3.

Example 4. Here we consider a three dimensional problem arising from the

finite element approximation to the building in Figure 4.4. The resulting sys-

tern of linear equations is of order 468. For this example the residual norms

behave quite differently (right hand side = e IS5) as Figure 4.5 shows.
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Figure 4.5. Residual Norms for Example 4.



103

accurate solution is required.
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compares favorably with CG in terms of cost.

Admittedly the discussion of the numerical results left out one impor-

tant point: the cost of I/O operations. which may be essential if the problem

is very large. There is however nothing conclusive which can be said about

this cost factor at this point. since it is totally dependent on the system. All

numerical tests reported here were carried out on a machine with virtual

memory I and the true I/O cost are therefore hidden. If the problem under

consideration is however so large that the matrix cannot be kept in core, and

each matrix-vector multiplication needs additional I/O operations. then we

can expect that LANPRO will compare very favorably with CG, as LANPRO

minimizes the number of matrix vector multiplications. This advantage may

be set off by additional I/O operations for recalling the Lanczos vectors. It

seems however that for problems as considered in Examples 1 or 2. LANPRO

will have a clear advantage since the difference in steps is very large,

Let us leave this speculation behind and draw some conclusions from the

observed behavior of the Lanczos algorithm with partial reorthogonalization.

The above examples show that LANPRO

finds a solution in ~ n steps,.
is economical for the treatment of several right hand sides.

can handle definite and indefinite problems equally well..
can take advantage of low accuracy requirements,

compares favorably with CG when the matrix vector product is expen-.
sive.
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